domingo, 11 de novembro de 2018

Efeito Joule no sistema categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

[pitG] Potencial Graceli de interações e transformações].

Q = A R I2 t [pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Efeito Joule.

Conforme vimos em verbetes desta série, as experiências realizadas, entre 1798 e 1799, pelo físico anglo-norte-americano Sir Benjamin Thompson, Conde de Rumford (1753-1814) e pelo químico inglês Sir Humphry Davy (1778-1829) sobre a produção de calor por atrito, levaram ao princípio de que ocalor é uma forma de movimento (energia). Desse modo, no final de 1840, o físico inglês James Prescott Joule (1818-1889) partiu desse princípio e realizou a seguinte experiência. Tomou um fio metálico, ligou-o a uma pilha voltaica [essa pilha havia sido inventada pelo físico italiano Alessandro Giuseppe Volta (1745-1827), em 1800] e mediu a quantidade de calor Q, por unidade de tempo t, dissipada no fio devido à corrente elétrica gerada pela pilha e de intensidade I; encontrou, então, que Q era proporcional à resistência elétrica R do fio multiplicada por I2. Na linguagem atual, esse efeito Joule é representado por:

Q = A R I2 t,

onde A = 1/J, sendo J o equivalente mecânico do calor. Esse resultado foi comunicado por Joule à RoyalSociety of London, em dezembro de 1840 e publicado em 1841 (Philosophical Magazine 19, p. 260). [Ver excerto deste artigo em: William Francis MagieA Source Book in Physics (McGraw-Hill Book Company, Inc., 1935)]. Ainda em 1841 (Philosophical Magazine 20, p. 98), Joule demonstrou que o calor oriundo da combustão dos equivalentes dos corpos é proporcional às intensidades de suas afinidades com o oxigênio (O), e medido pela força eletromotriz de uma pilha voltaica usada para decompor o óxido eletroliticamente.
                   Em 1842-1843 [Olga A. LezhnevaINDictionary of Scientific Biography (Charles Scribner´s Sons, 1981)], o físico germano-russo Heinrich Friedrich Emil (Emil KhristianovichLenz (1804-1865) estabeleceu leis sobre a ação térmica da corrente elétrica, independentemente de Joule. Por exemplo, observou que a quantidade de calor (Q) dissipada em um circuito era limitada pelos processos químicos que ocorriam na bateria utilizada no mesmo.
                   A partir de 1845 até 1850, Joule realizou uma série de experiências no sentido de encontrar alguma “lei geral de conservação” na Natureza, relacionando formas de energia química, elétrica e calorífica. Um de seus primeiros resultados foi publicado em 1845 (LondonEdinburgh and Dublin Philosophical Magazine and Journal of Science 27, p. 205). Contudo, essa “lei geral” foi encontrada pelo fisiologista e físico alemão Hermann Ludwig Ferdinand von Helmholtz (1821-1894), em um trabalho [Üeber die Erhaltung der Kräft (“Sobre a Conservação da Força”)] que apresentou, no dia 23 de julho de 1847, à Sociedade de Física de Berlim, no qual continha o Princípio Geral da Conservação da Energia. Por fim, em 1851, o matemático e físico inglês William ThomsonLord Kelvin de Lars (1824-1907) usou esse Princípio para determinar as relações entre força eletromotriz, trabalho (ou energia), potência (energia na unidade de tempo) e calor, em um circuito elétrico.

Maser, Laser no sistema categorial Graceli

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

[pitG] Potencial Graceli de interações e transformações].

/h, [pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

Bmn = Bnm ;  Amn = ( h /c3Bmn ,[pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



 = (Amn/Bnm) / [exp (h /kT) -1], [pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Maser, Laser e os Prêmios Nobel de Física (PNF) de 1964 e de 1966.

PNF de 1964 foi atribuído aos físicos, o norte-americano Charles Hard Townes (n.1915) e os russos Nikolai GennadievichBasov (1922-2001) e Aleksandr Mikhailovich Prokhorov (1916-2002) por seus trabalhos sobre a eletrônica quântica e que resultaram na construção do maser (microwave amplification by stimulated emission of radiation) (“amplificação de micro-ondas estimulada por emissão de radiação”) e do laser (light amplification by stimulated emission of radiation) (“amplificação de luz estimulada por emissão de radiação”). O PNF de 1966 foi concedido ao físico franco-alemão Alfred Kastler (1902-1984) por haver descoberto novas técnicas ópticas para estudar a ressonância de ondas hertezianas (vide verbete nesta série) em átomos.
                   A ideia teórica da possibilidade de emissão estimulada, base desses dois dispositivos eletrônicos foi proposta pelo físico germano-suíço-norte-americano Albert Einstein (1879-1955; PNF, 1921), em trabalhos realizados em 1916 (Verhandlungender Deutschen Physikalische Gesellschaft 18, p. 318; Mitteilungen der Physikalischen Gesellschaft zu Zürich 16, p. 47) e 1917 (Physikalische Zeitschrift 18, p. 121) nos quais tratou a radiação eletromagnética sob o ponto de vista mecânico estatístico. Com efeito, nesses trabalhos ele examinou um corpo negro (vide verbete nesta série) em equilíbrio contendo, além da radiação, átomos simples com apenas dois níveis de energia (En, Em), sendo que a passagem de um nível para o outro seria por intermédio da emissão ( n) ou da absorção ( m) de um quantum de luz de frequência dada por: /h, onde h é a constante de Planck.
                   Além do mais, considerou ainda Einstein que o átomo e a radiação se mantinham em equilíbrio estatístico, quando o número de átomos que passa de um nível para o outro permanece o mesmo. Desse modo, ele obteve relações importantes entre as probabilidades de emissão e de absorção de radiação de densidade , ocasião em que introduziu as famosas constantes Amn e Bmn (Bnm), sendo Amn relativa à emissão espontâneaBnm relacionada com a absorção e Bmn com a emissão de radiação, sendo que estas duas últimas são radiações estimuladas. Usando essas definições e considerando que:

Bmn = Bnm ;  Amn = ( h /c3Bmn ,

Einstein demonstrou a hoje conhecida equação de Planck (1900)-Einstein (1916/1917):

 = (Amn/Bnm) / [exp (h /kT) -1],

com  sendo a constante de Boltzmann. Este era um resultado teórico em busca de uma aplicação prática, que somente aconteceu na década de 1950. [Abraham Pais‘Subtle is the Lord... The Science and the Life of Albert Einstein (Oxford University Press, 1983)]. Vejamos como essa aplicação aconteceu.

                   Em 1949 (Comptes Rendus de l´Academie des Sciences de Paris 229, p. 1213), o físico francês Jean Brossel(1918-2003) e Kastler desenvolveram uma técnica, mais tarde conhecida como bombeamento óptico (“inversão de população”). Basicamente, essa técnica é assim descrita. Quando um grupo de átomos é iluminado com um feixe de radiação eletromagnética de determinado comprimento de onda (hertziana ou visível), alguns desses átomos absorvem os quanta correspondentes, e irão do estado de energia fundamental (ou de outro estado próximo) para um dos estados mais energéticos. Como o tempo médio (vida média) desses estados excitados é em torno de 10-7 s, eles então voltam ao estado fundamental emitindo radiação fluorescente. Em 1950 (Journal de Physique et le Radium 12, p. 255), Kastler divulgou novos detalhes da técnica que havia desenvolvido em 1949, com a participação de Brossel. Com essa técnica, Kastler conseguiu mover átomos de seu estado fundamental para estados excitados. Em 1951 (Physical Review 81, p. 279), os físicos norte-americanos Edward Mills Purcell (1912-1997; PNF, 1952) e Robert Vivian Pound (n.1919) demonstraram a emissão estimulada einsteiniana assim como a “inversão de população”. Registre-se que, em 1952 (Journal de Physique 13, p. 668), Brossel, Kastler e J. M. Winter, em 1953 (Comptes Rendus de l´Academiedes Sciences de Paris 237, p. 984) e em 1954 (Journal de Physique 15, p. 6), Brossel, Bernard Cagnac e Kastler conseguiram obter transições (saltos) quânticas múltiplas (curvas de ressonância) do átomo de sódio (Na) usando a técnica do bombeamento óptico.
                   A idéia de amplificar uma radiação usando as transições rotacionais moleculares, conhecida com o princípio do gerador molecular, foi sendo paulatinamente desenvolvida por Townes, em 1951 (Journal of Applied Physics 22, p. 1365), e pelos físicos, o norte-americano Joseph Weber (1919-2000), em 1953 (Institute of Electrical and Electronic EngineersTransactions on Electron Devices 3, p. 1), Basov e Prokhorov, em 1954 (Zhurnal Eksperimental´noi i Teoretiskoi Fiziki 27, p.431). Contudo, essa ideia só foi transformada em um dispositivo prático, ainda em 1954 (Physical Review 95, p. 282), quando Townes e os físicos norte-americanos James P. Gordon e Herbert J. Zeiger anunciaram que haviam construído o primeiro maserusando um gás de amônia (NH3). Aliás, registre-se que o nome maser só foi usado por esses físicos em 1955 (Physical Review99, p. 1264). Contudo, esse dispositivo funcionava intermitentemente, pois dispunha de apenas dois níveis de energian1 e n2, com n2 > n1. Assim, os elétrons do nível mais alto (n2) são estimulados e caem para o nível mais baixo (n1). Desse modo, a emissão estimulada só recomeçava quando havia um novo bombeamento de elétrons de n1  n2.
                   Para contornar a limitação indicada acima, o físico norte-americano Nicolas Bloembergen (n.1920; PNF, 1981) apresentou, em 1956 (Physical Review 104, p. 324), a ideia para a construção de um maser, usando três níveis de energia de íons paramagnéticos inseridos (dopados) em um cristal, ideia essa que ficou conhecida como maser de três níveis. Neste tipo de maser, um bombeamento óptico permite que a população de elétrons do nível 3 (n3) se mantenha substancialmente igual à do nível 1 (n1). Dessa forma, a emissão de micro-ondas estimuladas pode ocorrer de dois modos desde que, respectivamente, tenhamos n3 > nou n2 > n1. Registre-se que esse tipo de maser foi construído no Bell Telephone Laboratories (BTL), usando um cristal de rubi (AO3) com impurezas do metal paramagnético cromo (Cr3+), em 1958.
                   Muito embora o físico norte-americano Gordon Gould (1920-2005) haja, em 1957, sugerido o laser (light amplification by stimulated emission of radiation) (“amplificação de luz estimulada por emissão de radiação”), a ideia de construção de um laser (nome cunhado por ele), nas regiões de radiação infravermelha e visível (óptico), foi apresentada, em 1958 (PhysicalReview 112, p. 1940), por Townes e pelo físico norte-americano Arthur Leonard Schawlow (1921-1999; PNF, 1981). Note-se que, nesse mesmo ano de 1958, eles solicitaram a patente, a qual, no entanto, só lhes foi concedida em 1960 (US PatentNo.2.292.922). Ainda em 1958 (Zhurnal Eksperimental´noi i Teoretiskoi Fiziki 34, p. 1658), Prokhorov discutiu a possibilidade de amplificar uma radiação de comprimento de onda () menor do que 1 mm, usando as transições rotacionais da NH3. [Charles Hard Townes and Arthur Leonard Schawlow, Microwave Spectroscopy (Mc-Graw Hill Book Company, 1955); Charles Hard Townes; Nikolai Gennadievich Basov; Aleksandr Mikhailovich ProkhorovNobel Lectures (11 de dezembro de 1964); Arthur Kastler, Nobel Lectures (12 de dezembro de 1966); Nicolas Bloembergen e Arthur Leonard SchawlowNobel Lectures (08 de dezembro de 1981)].  
                   Em 16 de maio de 1960, o físico norte-americano Theodore Harold Maiman (1927-2007) construiu o primeiro laser óptico usando um cristal róseo de rubi [AOcom 0,05% (em peso) de óxido de cromo (Cr2O3)], porém envolvendo três níveis de energia do mesmo íon de cromo (Cr+++) usado na construção do maser. Observe-se que os três níveis do Cr utilizados por Maiman foram: 1) duas bandas do 4F (4F1 e 4F2); 2) o estado metaestável 2E; 3) o estado fundamental. Como essas bandas são largas, eram puderam ser populadas (por bombeamento óptico) usando “flashes” de lâmpadas de xenônio (Xe). É interessante registrar que a revista norte-americana Physical Review rejeitou o trabalho de Maiman sobre a invenção do laser (anunciada no New York Times de 07 de julho de 1960), o qual só foi publicado em agosto de 1960, pelas revistas inglesas Nature 187, p. 493 (06 de agosto) British Communication Electronics 1, p. 674. Registre-se que, em 1961, a Physical Review 123publicou dois trabalhos (p. 1145; 1151) de Maiman e de seus colaboradores R. H. Hoskins, I. J. D´Haenens, C. K. Asawa e V. Evtuhov, nos quais descreveram a construção do primeiro laser







Mudanças de Estado e os Gases Reais de van der Waals no sistema categorial Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

[pitG] Potencial Graceli de interações e transformações]

PV = P0 V0 + [1 +  (t – t0)] [pitG]        PV = n RT [pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


(P + a/V2) (V - b) = RT. [pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


VC = 3b;   TC = 8a/(27bR);   P = a/(27b2). [pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


PV/RT = 1 + B/V + C/V2 + D/V4 + E/V6 + F/V8[pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

T = b1+ b2/T + b3/T2 + b4/T4 + b5/T6[pitG]
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Mudanças de Estado e os Gases Reais de van der Waals.

De um modo geral, qualquer substância pode se apresentar em um de três estados (fases) físicos: sólidolíquidoou gasoso, conforme a temperatura (T), pressão (P) e volume (V) que a caracteriza. No estado sólido, a forma e o volume são bem definidos, com uma distribuição espacial bastante regular devido à força de coesão entre as moléculas (que são formadas de átomos) que as constitui. No estado líquido, o volume é bem definido, porém a forma é variável em virtude de ser mais fraca a força de coesão entre suas moléculas constituintes; em vista disso as moléculas têm mais mobilidade e podem se adaptar à forma do recipiente no qual está contido. No estado gasoso, a força de coesão entre as moléculas é muito mais fraca, de modo que o volume e a forma são determinados pela forma e volume do recipiente que o contém, em virtude da grande mobilidade de suas moléculas. Esses estados são caracterizados por uma função de estado envolvendo P, V, e T: f(P, V, T). Por exemplo, para o caso do estado gasoso, essa função é representada por uma equação proposta, em 1834 (Journal de l´Ecole Polytechnique 14, p. 190), pelo engenheiro e físico francês Emile Clapeyron (1799-1864) (que inventou o diagrama bidimensional P, V), conhecida como Equação de Clapeyron, que hoje tem a seguinte representação analítica:

PV = P0 V0 + [1 +  (t – t0)]         PV = n RT ,

onde V (P) e V0 (P0) representam, respectivamente, o volume (pressão) na temperatura final (t) e inicial (t0), n é o número de moles (moléculas-grama ou moléculas-kilograma), T é a temperatura absoluta de Kelvin, e R = k N0, sendo k a constante de Boltzmann e N0 o número de Avogadro. Registre-se que essa equação só se aplica a gases ideais.
                   Quando há uma variação na temperatura de um sistema físico em um de seus estados (fases), há uma mudança de estado (fase). Assim, a passagem do estado sólido para o líquido se denomina fusão; o inverso, ou seja, a passagem do estado líquido para o sólido recebe o nome de solidificação. Por sua vez, a passagem do estado líquido para o gasoso é conhecida como vaporização; a mudança inversa chama-se condensação. Registre que a vaporização pode ser de dois tipos: 1) evaporação - quando o processo ocorre apenas com as moléculas da superfície livre do líquido; 2) ebulição - quando a formação do vapor de água ocorre em toda a massa do líquido; isso acontece, por exemplo, quando você esquenta a água em um recipiente. Por fim, existe a mudança de fase conhecida como sublimação, quando há passagem do estado sólido diretamente para o estado gasoso. Note que em verbetes desta série tratamos dos calores latentes envolvidos em cada uma dessas mudanças de fase, descobertos pelo químico escocês Joseph Black (1728-1799), em experiências realizadas entre 1760 e 1765. [Ver excertos desses trabalhos em William Francis MagieA Source Book in Physics (McGraw-Hill Book Company, Inc., 1935)].   
                   A água (H2O) é o exemplo mais conhecido de possuir as três fases: gelo (sólido), água (líquido) e vapor (gasoso). Sobre a água, existe uma situação extremamente interessante, descoberta pelo físico suíço Jean-André Deluc (1727-1817), em 1776. Ele descobriu que a água se contrai ao invés de se expandir quando a temperatura varia entre as temperaturas 0C e 40C. É por essa razão que, durante o inverno, quando as temperaturas atingem valores próximos de 00C, as superfícies dos lagos congelam, enquanto abaixo delas a água permanece com 40C. Nesta temperatura, o volume é mínimo, porém sua densidade é maxima. Isso ocorre em virtude de as moléculas da água, a 00C, quando começa a aumentar a temperatura, esta enfraquece a força de coesão molecular, e elas (moléculas) se aproximam diminuindo o volume que antes ocupavam. A partir de 40C, na medida em que aumenta a temperatura, o movimento térmico das moléculas faz com que elas se afastem aumentando, portanto, o seu volume. Ainda sobre a água, é interessante notar que, na temperatura de +0,0098 0Ce na pressão de 4,579 mm de Hg, ela apresentam os três estados: sólidolíquido e gasoso, o chamado ponto triplo.
                   Um estudo mais detalhado das mudanças de estado foi realizado pelo químico holandês Thomas Andrews (1813-1885), a partir de 1861, apresentado por ele no dia 17 de junho de 1869 (Philosophical Transactions of the Royal Society of London 155, p. 575), à Royal Society of London. Nesse trabalho, ele mostrou que acima de uma dada temperatura e pressão, denominadas por ele de valores críticos (TC , PC), o dióxido de carbono (CO2), em particular, e todos os gases em geral, pressão alguma, por maior que seja, pode causar sua liquefação. Como resultado de suas experiências, Andrews encontrou que TC= 31 0C para o CO2 e TC= 200 0C para o éter (R-O-R, com R indicando radicais hidrocarbonetos, p.e.: C2H5). Ainda nessas experiências, ele fez a distinção entre vapor e gás ao afirmar que o vapor é um gás em qualquer temperatura baixo de sua TC. Estudos posteriores das curvas de Andrews, incluindo a temperatura, resumem as mudanças de estado dos corpos, conforme se pode ver na figura abaixo [Francis Weston Sears, Introducción a la Termodinámica, Teoria Cinética de los Gases y Mecánica Estadística (Editorial Reverté, S. A., 1959); Google Imagens].
                
                
PVT

                   É oportuno destacar que foi o físico holandês Johannes Diderik van der Waals (1837-1932; PNF, 1910) quem deu uma interpretação, no nível molecular, dos resultados obtidos por Andrews. Com efeito, em 1873, em sua Tese de Doutoramento intitulada Over de Continuiteit van den Gas-en Vloeistoftoestand (“Sobre a Continuidade dos Estados Líquido e Gasoso”), van der Waals demonstrou que a lei dos gases ideais poderia ser deduzida da Teoria Cinética dos Gases, ao assumir que as moléculas não têm volume e que não há forças atrativas entre elas. Em 1881, van der Waals introduziu dois parâmetros na equação de Estado dos Gases Ideais para considerar o tamanho e a força entre as moléculas. Assim, para os gases reais, ele apresentou a seguinte Equação de Estado:

(P + a/V2) (V - b) = RT.

Nesta equação, mais tarde conhecida como Equação de van der Waals (EvdW), a constante b é o co-volume (volume próprio das moléculas) e a é uma constante que decorre da colisão interna entre as moléculas. Lembre que é a pressão das moléculas contra as paredes do recipiente de volume V que contém o gás.
                   É interessante ressaltar que os pontos críticos de Andrews (VC, TCPC) são determinados pela EvdW, assumindo que nas curvas de Andrews, naqueles pontos, ao mesmo tempo, temos um ponto de máximo [] e um ponto de inflexão []. Usando essas condições, virá [Mark W. Zemansky, Heat and Thermodynamics (McGraw-Hill Book Company, Inc., 1957)]:

VC = 3b;   TC = 8a/(27bR);   P = a/(27b2).

                   Ressalte-se, também, que a EvdW foi estudada pelo físico holandês Heike Kamerlingh-Onnes (1853-1926), objetivando realizar medidas mais precisas em baixas temperaturas. Assim, em 1901 (Communications from the Physical Laboratory at University of Leiden 74), propôs a seguinte Equação de Estado dos Gases Reais:

PV/RT = 1 + B/V + C/V2 + D/V4 + E/V6 + F/V8,

onde B, C, D, E e F foram chamados por ele de os coeficientes do virial e que dependem de T, da seguinte maneira: T = b1+ b2/T + b3/T2 + b4/T4 + b5/T6, com expressões similares para as demais constantes