Mudanças de Estado e os Gases Reais de van der Waals.
De um modo geral, qualquer substância pode se apresentar em um de três estados (fases) físicos: sólido, líquidoou gasoso, conforme a temperatura (T), pressão (P) e volume (V) que a caracteriza. No estado sólido, a forma e o volume são bem definidos, com uma distribuição espacial bastante regular devido à força de coesão entre as moléculas (que são formadas de átomos) que as constitui. No estado líquido, o volume é bem definido, porém a forma é variável em virtude de ser mais fraca a força de coesão entre suas moléculas constituintes; em vista disso as moléculas têm mais mobilidade e podem se adaptar à forma do recipiente no qual está contido. No estado gasoso, a força de coesão entre as moléculas é muito mais fraca, de modo que o volume e a forma são determinados pela forma e volume do recipiente que o contém, em virtude da grande mobilidade de suas moléculas. Esses estados são caracterizados por uma função de estado envolvendo P, V, e T: f(P, V, T). Por exemplo, para o caso do estado gasoso, essa função é representada por uma equação proposta, em 1834 (Journal de l´Ecole Polytechnique 14, p. 190), pelo engenheiro e físico francês Emile Clapeyron (1799-1864) (que inventou o diagrama bidimensional P, V), conhecida como Equação de Clapeyron, que hoje tem a seguinte representação analítica:
PV = P0 V0 + [1 +
(t – t0)]
PV = n RT ,
onde V (P) e V0 (P0) representam, respectivamente, o volume (pressão) na temperatura final (t) e inicial (t0), n é o número de moles (moléculas-grama ou moléculas-kilograma), T é a temperatura absoluta de Kelvin, e R = k N0, sendo k a constante de Boltzmann e N0 o número de Avogadro. Registre-se que essa equação só se aplica a gases ideais.
Quando há uma variação na temperatura de um sistema físico em um de seus estados (fases), há uma mudança de estado (fase). Assim, a passagem do estado sólido para o líquido se denomina fusão; o inverso, ou seja, a passagem do estado líquido para o sólido recebe o nome de solidificação. Por sua vez, a passagem do estado líquido para o gasoso é conhecida como vaporização; a mudança inversa chama-se condensação. Registre que a vaporização pode ser de dois tipos: 1) evaporação - quando o processo ocorre apenas com as moléculas da superfície livre do líquido; 2) ebulição - quando a formação do vapor de água ocorre em toda a massa do líquido; isso acontece, por exemplo, quando você esquenta a água em um recipiente. Por fim, existe a mudança de fase conhecida como sublimação, quando há passagem do estado sólido diretamente para o estado gasoso. Note que em verbetes desta série tratamos dos calores latentes envolvidos em cada uma dessas mudanças de fase, descobertos pelo químico escocês Joseph Black (1728-1799), em experiências realizadas entre 1760 e 1765. [Ver excertos desses trabalhos em William Francis Magie, A Source Book in Physics (McGraw-Hill Book Company, Inc., 1935)].
A água (H2O) é o exemplo mais conhecido de possuir as três fases: gelo (sólido), água (líquido) e vapor (gasoso). Sobre a água, existe uma situação extremamente interessante, descoberta pelo físico suíço Jean-André Deluc (1727-1817), em 1776. Ele descobriu que a água se contrai ao invés de se expandir quando a temperatura varia entre as temperaturas 00 C e 40C. É por essa razão que, durante o inverno, quando as temperaturas atingem valores próximos de 00C, as superfícies dos lagos congelam, enquanto abaixo delas a água permanece com 40C. Nesta temperatura, o volume é mínimo, porém sua densidade é maxima. Isso ocorre em virtude de as moléculas da água, a 00C, quando começa a aumentar a temperatura, esta enfraquece a força de coesão molecular, e elas (moléculas) se aproximam diminuindo o volume que antes ocupavam. A partir de 40C, na medida em que aumenta a temperatura, o movimento térmico das moléculas faz com que elas se afastem aumentando, portanto, o seu volume. Ainda sobre a água, é interessante notar que, na temperatura de +0,0098 0Ce na pressão de 4,579 mm de Hg, ela apresentam os três estados: sólido, líquido e gasoso, o chamado ponto triplo.
Um estudo mais detalhado das mudanças de estado foi realizado pelo químico holandês Thomas Andrews (1813-1885), a partir de 1861, apresentado por ele no dia 17 de junho de 1869 (Philosophical Transactions of the Royal Society of London 155, p. 575), à Royal Society of London. Nesse trabalho, ele mostrou que acima de uma dada temperatura e pressão, denominadas por ele de valores críticos (TC , PC), o dióxido de carbono (CO2), em particular, e todos os gases em geral, pressão alguma, por maior que seja, pode causar sua liquefação. Como resultado de suas experiências, Andrews encontrou que TC= 31 0C para o CO2 e TC= 200 0C para o éter (R-O-R, com R indicando radicais hidrocarbonetos, p.e.: C2H5). Ainda nessas experiências, ele fez a distinção entre vapor e gás ao afirmar que o vapor é um gás em qualquer temperatura baixo de sua TC. Estudos posteriores das curvas de Andrews, incluindo a temperatura, resumem as mudanças de estado dos corpos, conforme se pode ver na figura abaixo [Francis Weston Sears, Introducción a la Termodinámica, Teoria Cinética de los Gases y Mecánica Estadística (Editorial Reverté, S. A., 1959); Google Imagens].

É oportuno destacar que foi o físico holandês Johannes Diderik van der Waals (1837-1932; PNF, 1910) quem deu uma interpretação, no nível molecular, dos resultados obtidos por Andrews. Com efeito, em 1873, em sua Tese de Doutoramento intitulada Over de Continuiteit van den Gas-en Vloeistoftoestand (“Sobre a Continuidade dos Estados Líquido e Gasoso”), van der Waals demonstrou que a lei dos gases ideais poderia ser deduzida da Teoria Cinética dos Gases, ao assumir que as moléculas não têm volume e que não há forças atrativas entre elas. Em 1881, van der Waals introduziu dois parâmetros na equação de Estado dos Gases Ideais para considerar o tamanho e a força entre as moléculas. Assim, para os gases reais, ele apresentou a seguinte Equação de Estado:
(P + a/V2) (V - b) = RT.
Nesta equação, mais tarde conhecida como Equação de van der Waals (EvdW), a constante b é o co-volume (volume próprio das moléculas) e a é uma constante que decorre da colisão interna entre as moléculas. Lembre que P é a pressão das moléculas contra as paredes do recipiente de volume V que contém o gás.
É interessante ressaltar que os pontos críticos de Andrews (
VC,
TC,
PC)
são determinados pela
EvdW, assumindo que nas
curvas de Andrews, naqueles pontos, ao mesmo tempo, temos um ponto de máximo [

] e um ponto de inflexão [

].
Usando essas condições, virá [Mark W. Zemansky, Heat and Thermodynamics (McGraw-Hill Book Company, Inc., 1957)]:
VC = 3b; TC = 8a/(27bR); PC = a/(27b2).
Ressalte-se, também, que a EvdW foi estudada pelo físico holandês Heike Kamerlingh-Onnes (1853-1926), objetivando realizar medidas mais precisas em baixas temperaturas. Assim, em 1901 (Communications from the Physical Laboratory at University of Leiden 74), propôs a seguinte Equação de Estado dos Gases Reais:
PV/RT = 1 + B/V + C/V2 + D/V4 + E/V6 + F/V8,
onde B, C, D, E e F foram chamados por ele de os coeficientes do virial e que dependem de T, da seguinte maneira: T = b1+ b2/T + b3/T2 + b4/T4 + b5/T6, com expressões similares para as demais constantes